Книга: Укрощение больших данных (Фрэнкс Билл); Манн, Иванов и Фербер, 2014

Купить Купить в кредит

Описание

Автор этой книги понятным неспециалисту языком рассказывает о том, что такое большие данные, как они меняют мир и что нужно делать, чтобы повысить уровень аналитики в своей организации.

Характеристики (7)


ПараметрЗначение
Автор(ы)
ИздательМанн, Иванов и Фербер
Год издания2014
Страниц352
ISBN978-5-00057-146-0
Размеры16,80 см × 24,10 см × 2,20 см
ТематикаЛидерство, мотивация, тайм-менеджмент


Сравнить цены (4)

Цена от 153 грн. до 604 грн. в 4 магазинах

МагазинЦенаНаличие
Bookovka UA
5/5
«Буковка» – це в першу чергу високий асортимент якісних книг відомих видань

Купить в кредит (2)


Компания Предложение
Prostocredit

Сума: від 500 до 6500 грн. Срок: 90 днів з наявністю пільгового періоду від 3 до 30 днів під знижену % ставку (з можливістю пролонгації пільгового кредиту необмеженої кількості раз) Процентна ставка: Пільгова 1,7%, Базова 2% Робота 24/7: заявки на кредит, видача кредиту

Aviracredit

Aviracredit - Онлайн кредит на картку до 6300 грн. Швидке рішення щодо заявки, гарний рівень узгодження заявок. Розмір виплати за перший виданий кредит - 227 грн.

Полезные онлайн-сервисы


Компания Предложение

Отзывы (4)


  • 5/5

    Книга очень понравиласьРекомендую тем, кто решил начать анализировать данные на более профессиональном уровне

    0
    0
  • 5/5

    Рецензия на книгу «Укрощение больших данных»Ещё одна книга, которую я рекомендую к прочтению всем, кто хочет понять насколько глубока кроличья нора.
    Этот потрясающий труд разительно отличается от книги «Большие данные», Виктора Майер-Шенбергера и Кеннета Кукьера. Её написал Билл Фрэнкс – директор по бизнес-аналитике компании Teradata, и это о многом говорит. Автор знает о больших данных столько, что позволил себе предложить подход к работе с огромными объёмами данных. Книга настолько хорошо структурирована, что читать её – одно удовольствие.
    Значимость большим данным придает вовсе не то, что они большие, и даже не то, что они представляют собой данные. Важно то, как вы анализируете и применяете эти данные для развития своего бизнеса.
    И не важно сколько у вас данных – 10 мегабайт или 10 петабайт. Если вы сейчас не в силах их проанализировать и использовать, то это и есть большие данные, которые могуть стать вашей большой проблемой.
    Также мне понравилась очень точная мысль про инновации, которые в нашей стране и сопредельных очень часто, хотя нет, почти всегда, путают с чем-то другим.
    Автор рассказывает и об основных технологиях для проведения анализа и обработки данных – о модели MapReduce, Hadoop и об R. Да, он рассказывает о них совсем чуть-чуть, но и этого достаточно, чтобы понять спектр решаемых проблем и области применения.
    Предложенный подход по работе с данными очень похож на то, что я изобразил в магистерской диссертации и это заставило меня улыбаться. Методы и процессы, которые предлагает автор, при должном подходе, позволят организации получить максимальную выгоду от имеющихся данных.
    Чтение оставило массу положительных впечатлений и всего лишь одно отрицательное – книга очень быстро закончилась. Читается на одном дыхании, рекомендую всем – от младшего инженера до главного руководителя.

    0
    0
  • 5/5

    Интересно для бизнеса-аналитика. Неинтересно для ИТ.Книга интересна хотя бы тем, что она является первой (одной из первых?) по теме больших данных. То есть «модному термину» дается более-менее достаточное объяснение. С этой точки зрения, книга вроде бы для бизнеса. Но в ней есть и технические детали, в которые бизнес вникать не будет (если не имеет в бэкграунде) технического образования.
    И в то же время эти технические детали явно недостаточны для того, чтобы начать что-то делать своими руками.
    Большинство примеров использования big data – из веб-коммерции и розницы (RFID). Примеров из других областей (телеметрия, медицина) намного меньше и они менее конкретные.
    Резюме: книга хороша как первая книга по теме для топ и миддл-менеджеров и бизнес-аналитиков, которые занимаются чем-то другим. Менеджмент поймет, какие задачи может ставить. Бизнес-аналитики будут «в курсе происходящего».
    Для технических специалистов, архитекторов, системных аналитиков, аналитиков данных – необходимо что-то более глубокое и системное.

    0
    0
  • 3/5

    Для больших начальников или для студентовКнига начинается восторженными заявлениями о перспективах анализа больших данных («Большие данные? Ух, мы вас сейчас проанализируем!»). Эта эмоциональность к концу первой главы начинает надоедать.
    Приводится несколько примеров источников больших данных, но когда речь заходит о методах анализа, то повествование не распространяется дальше общих фраз. Если считать это обзором, то упоминается слишком мало инструментов и технологий.
    На мой взгляд, лучше всего проработана глава 3, в которой описываются требования к бизнес-аналитикам и их месте в структуре организации. Эта часть может быть интересна для HR-специалистов и руководителей. Но о больших данных в этой главе – ни слова.
    Общий вывод: книга носит обзорный характер и подойдёт для первого знакомства с возможностями, которые открывает аналитическое подразделение для бизнеса. Я бы назвал её «Бизнес-аналитик: введение в специальность».

    0
    0
Зарегистрируйтесь и получайте бонусы за покупки!



закладки (0) сравнение (0)