- Руководства по пользованию программами
- Программирование
- Операционные системы и утилиты для ПК
- Интернет
- Графика. Дизайн. Проектирование
- Программы и утилиты для цифровых устройств
- Железо ПК
- Информатика
- Сети и коммуникации
- Бухгалтерия
- Анализ данных
- Электронная бухгалтерия
- Машинное обучение. Анализ данных
- Менеджмент в IT
Темные данные. Практическое руководство по принятию правильных решений в мире недостающих данных; Альпина Диджитал, 2020
141 грн.
- Издатель: Альпина Диджитал
- ISBN: 9785961458930
EAN: 9785961458930
- Книги: Базы данных
- ID: 7239276
Описание
Человечество научилось собирать, обрабатывать и использовать в науке, бизнесе и повседневной жизни огромные массивы данных. Но что делать с данными, которых у нас нет? Допустимо ли игнорировать то, чего мы не замечаем? Британский статистик Дэвид Хэнд считает, что это по меньшей мере недальновидно, а порой – крайне опасно. В своей книге он выделяет 15 влияющих на наши решения и действия видов данных, которые остаются в тени. Например, речь идет об учете сигналов бедствия, которые могли бы подать жители бедных районов, если бы у них были смартфоны, результатах медицинского исследования, которые намеренно утаили или случайно исказили, или данных, ставших «темными» из-за плохого набора критериев для включения в выборку. Хэнд также рассказывает о том, какие меры могут сгладить эффект «темных данных» и как их можно обратить себе на пользу. Книга будет интересна широкому кругу читателей, интересующихся дата-сайенс, программированием и статистикой.
Характеристики (5)
Параметр | Значение |
---|---|
Автор(ы) | Дэвид Хэнд |
Издатель | Альпина Диджитал |
Год издания | 2020 |
Возрастные ограничения | 12 |
ISBN | 978-5-9614-5893-0 |
Цены (1)
Цена от 141 грн. до 141 грн. в 1 магазинах
Магазин | Цена | Наличие |
---|---|---|
Купить в кредит (2)
Компания | Предложение |
---|---|
Полезные онлайн-сервисы
Компания | Предложение |
---|
Отзывы (10)
- autoreg875996569 — 23 Марта 2021
Просто, понятно, без длинных отступлений и туманных рассуждений на отвлеченные темы. Книга, которую хочется перечитывать. Жалею, что не прочла раньше.
00 - Настя — 3 Февраля 2021
В условиях повальной цифровизации всего и вся наконец кто-то начал задавать неудобные вопросы..Очень необычная теория. Оригинально, познавательно и на понятных примерах рассказано где «обитает» информация, по каким правилам движется в сети и реально ли полностью извлечь собственные данные из всемирной паутины (и разумно ли это).
00 - Александр — 3 Февраля 2021
Если любите математику и теорию вероятности, книга точно вас развлечёт. Особенно в голову запал принцип работы с тёмными данными, ближе к концу книги. Людям со стороны может быть интересно прочитать её как путеводитель в мире современного интернета и облачных данных. Сразу вспоминаю недавний «слив» личных данных россиян и общую беспомощность людей в таких вопросах. После прочтения книги где-то станет менее страшно, а где-то наоборот)
00 - julia_nomad — 4 Февраля 2021
Книга-топ. Достаточно простая, чтобы не считать её академической литературы. Но на весьма сложную и специфическую тему. Напоминает концепцию безмасштабных сетей, но уже в более практическом, конкретном смысле.
00 - Ivan — 2 Февраля 2021
Книга может показаться немного сложноватой, но она того стоит. Ещё рекомендую книгу «Формула» Барабаши, подобного плана. Как статистика и информатика поможет увидеть важные или опасные закономерности в повседневности.
00 - Сергей — 2 Февраля 2021
Готовьтесь, будет много цифр. Но прочитать это нужно всем, кто задействован в продажах или занимается распространением своего/чужого творчества. Из приведённых теорий и алгоритмов можно начать интуитивно понимать любые механизмы распространения и хранения данных.
00 - Alexander Khadzhinov — 1 Февраля 2021
Мы живем в мире в котором, казалось бы, уже есть бесчисленное множество информации и знаний о каждом из нас. Но на самом деле существует иная сторона – Dark Data – «темные данные», которые хранятся, но нигде не используются! Простой пример – при текущем уровне развития искусственного интеллекта (ИИ), машинного обучения и Интернета вещей (IoT), объём хранимых в мире Dark Data через пять вырастет в 5 раз – до 91 зеттабайт при условии что общий объем Big Data будет составлять по оценкам IDC 175 зеттабайт. На разных примерах Дэвид Хэнд показывает необходимость в идентификации и выявлении этого огромного океана данных, их классификации, а так же изменения политик обработки таких данных. Острая необходимость в этом связана хотя бы с тем что
"для поглощения выбросов углекислого газа, связанных с хранением «темных данных», потребуется 7 500 000 акров леса (3,0 млн гектаров)" (c)00 - Анонимно — 30 Сентября 2022
Михаил Панкратов, спасибо вам, что нашли время и не поленились написать такой толковый отзыв.
00 - Михаил Панкратов — 8 Мая 2021
Просмотр других отзывов вызывает некоторое недоумение. Эти комментаторы точно читали книгу?
Итак, о чем же книга: эта книга написана президентом Британского Королевского Статистического Общества, и основная ее тема это теория вероятности и математическая статистика. Целевая аудитория – те кому нравится творчество Талеба, Млодинова, Мобуссина и других сходных авторов.
Из того, что я читал, похоже на книгу «Как лгать при помощи статистики» Дарелла Хаффа. Но гораздо глубже и современнее конечно.
В книге разбираются такие вопросы как, например, что делать если в социологическом опросе часть респондентов вообще не ответили на вопросы? Можно их просто не учитывать? (спойлер: нет, нельзя) Ну или как поступать, когда при испытаниях нового лекарства часть испытуемых по собственному желанию вышли из программы досрочно. Можно их просто вычеркнуть, как будто их и не было никогда? (спойлер: снова нет). Вот это и есть те самые «темные данные» которым посвящена книга.
Эта книга НЕ ПРО приватность и сохранность личных данных в интернете. Этот вопрос пару раз упоминается но совершенно мимоходом.
Также эта книга НЕ ПРО Big Data. Все что рассматривается тут это структурированные данные полученные от агентств вроде министерства здравоохранения или в ходе, скажем, клинического эксперимента. Big Data это обработка естественного языка, изображений, звука и видео контента. В книге про это нет ничего или почти ничего.
Этические вопросы сбора данных о людях по большей части тоже лежат за пределами данной книги. Тоже пара упоминаний вскользь о том, что такая проблема в принципе есть – не более того. Так что книга НЕ ПРО это тоже.
Ближе к самой книге: первая половина, на мой взгляд, написана просто отлично. Очень интересно, много классных вопросов и примеров. Все по теме. Вторая половина, к сожалению, огорчает. Автор начинает слишком сильно растекаться мыслями. Получается повествование просто обо всем и в результате ни о чем одновременно. Он пытается охватить сразу и астрофизику и биржевые махинации и медицинские вопросы и вообще все. В итоге повествование теряет фокус, становится расплывчатым и неконкретным.
Было бы лучше, если бы автор пошел не в ширь, а в глубь. То есть более глубоко рассмотрел поднятые им же самим вопросы. Почему промахивались социологические опросы касательно победы Трампа? Почему статистические органы рапортуют аномально низкие показатели инфляции хотя потребители отмечают повышение цен? А промахи опросов касательно брексита? Вот где не мешало бы покопаться в темных данных.
А как насчет проблем с кредитным скорингом перед кризисом 2008 года? Как получалось, что множество заемщиков невероятно низкого качества получило такие объемы кредитов? Я изучал вопрос более глубоко и знаю, что тут тоже не обошлось без изрядной доли темных данных.
В общем, за первую половину книги 5 звезд, а за вторую половину две. В итоге в среднем 3,5 звезды, которые я округлил в пользу автора до 4. Почитать все же стоит.00 - mgarkunov — 20 Января 2023
Я уже давно понимал и учитывал темные данные в своих отчетах и общении с бизнес-заказчиками, а теперь есть хорошо структурированная и полезная книга, которую можно рекомендовать всем.
Считаю, что эту книгу обязательно должны прочесть все аналитики и те, кто работает с отчетами.00